A crystallographic study of Cys69Ala flavodoxin II from Azotobacter vinelandii: structural determinants of redox potential.
نویسندگان
چکیده
Flavodoxin II from Azotobacter vinelandii is a "long-chain" flavodoxin and has one of the lowest E1 midpoint potentials found within the flavodoxin family. To better understand the relationship between structural features and redox potentials, the oxidized form of the C69A mutant of this flavodoxin was crystallized and its three-dimensional structure determined to a resolution of 2.25 A by molecular replacement. Its overall fold is similar to that of other flavodoxins, with a central five-stranded parallel beta-sheet flanked on either side by alpha-helices. An eight-residue insertion, compared with other long-chain flavodoxins, forms a short 3(10) helix preceding the start of the alpha3 helix. The flavin mononucleotide (FMN) cofactor is flanked by a leucine on its re face instead of the more conserved tryptophan, resulting in a more solvent-accessible FMN binding site and stabilization of the hydroquinone (hq) state. In particular the absence of a hydrogen bond to the N5 atom of the oxidized FMN was identified, which destabilizes the ox form, as well as an exceptionally large patch of acidic residues in the vicinity of the FMN N1 atom, which destabilizes the hq form. It is also argued that the presence of a Gly at position 58 in the sequence stabilizes the semiquinone (sq) form, as a result, raising the E2 value in particular.
منابع مشابه
Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II
Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant-modified basal plane graphite elect...
متن کاملFlavodoxin hydroquinone reduces Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state.
Azotobacter vinelandii flavodoxin hydroquinone (FldHQ) is a physiological reductant to nitrogenase supporting catalysis that is twice as energy efficient (ATP/2e- = 2) as dithionite (ATP/2e- = 4). This catalytic efficiency results from reduction of Fe protein from A. vinelandii (Av2) to the all-ferrous oxidation state ([Fe4S4]0), in contrast to dithionite, which only reduces Av2 to the [Fe4S4]1...
متن کاملFlavodoxin 1 of Azotobacter vinelandii: characterization and role in electron donation to purified assimilatory nitrate reductase.
Flavodoxins synthesized by Azotobacter vinelandii strain UW 36 during growth on nitrate as nitrogen source were separated by FPLC on a Mono Q column into two species, flavodoxin 1 (AvFld 1) and flavodoxin 2 (AvFld 2). Both proteins migrated as single bands on SDS/PAGE. AvFld 1 was approx. 5-fold more abundant than AvFld 2 in the unresolved flavodoxin mixture. N-terminal amino acid analysis show...
متن کاملComplex formation between flavodoxin and cytochrome c. Cross-linking studies.
Complex formation between Azotobacter vinelandii flavodoxin and horse cytochrome c has been demonstrated through cross-linking studies with dimethyl suberimidate, dimethyl adipimidate, 1-ethyl-3-(3-di-methylaminopropyl)carbodiimide, and dimethyl-3,3'-dithiobispropionimidate. Essentially quantitative cross-linking of cytochrome c and flavodoxin was observed at low ionic strengths with the carbod...
متن کاملElectron Transport to Assimilatory Nitrate Reductase in A zotobacter vinelandii
Assimilatory nitrate reductase was particle-bound in extracts from Azotobacter vinelandii. Nitrate reduction by particle fractions was dependent on NADPH and a particle-bound electron carrier. When the enzyme was solubilized from the particles by treatment with detergents, the particle-bound electron carrier could be substituted by ferredoxin or flavodoxin. Flavodoxin reduced at the expense of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 14 9 شماره
صفحات -
تاریخ انتشار 2005